A strong law of large numbers for branching processes: almost sure spine events
نویسندگان
چکیده
We demonstrate a novel strong law of large numbers for branching processes, with a simple proof via measure-theoretic manipulations and spine theory. Roughly speaking, any sequence of events that eventually occurs almost surely for the spine entails the almost sure convergence of a certain sum over particles in the population.
منابع مشابه
A strong law of large numbers in credibility theory∗
In this paper, the issue of the law of large numbers for fuzzy variables is considered. Since in credibility theory convergence in credibility implies convergence almost sure, the strong law of large numbers is defined via convergence in credibility, while the weak law of large numbers is defined through convergence almost sure. Based on the convergence results about the unform integrability of...
متن کاملMARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....
متن کاملA Note on the Strong Law of Large Numbers
Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem ...
متن کاملBranching Brownian Motion: Almost Sure Growth Along Scaled Paths
We give a proof of a result on the growth of the number of particles along chosen paths in a branching Brownian motion. The work follows the approach of classical large deviations results, in which paths in C[0, 1] are rescaled onto C[0, T ] for large T . The methods used are probabilistic and take advantage of modern spine techniques.
متن کاملStrong law of large numbers for fragmentation processes
In the spirit of a classical result for Crump–Mode–Jagers processes, we prove a strong law of large numbers for fragmentation processes. Specifically, for self-similar fragmentation processes, including homogenous processes, we prove the almost sure convergence of an empirical measure associated with the stopping line corresponding to first fragments of size strictly smaller than η for 1 ≥ η > ...
متن کامل